The Academy of Sciences of the Czech rebublic - ASCR


Electical Discharges in Liquids and Gas/Liquid Environment


Principles and Research Objectives

 

Plazmochemické procesy ve vodě a nad vodní hladinou

Non-thermal plasma generated by electrical discharges in water and at gas/liquid environments is investigated, the physical and chemical processes induced by these discharges in water and their effects on organic compounds and microorganisms. Non-equilibrium plasma generated by electrical discharges in liquids initiate various chemical and physical processes that can be potentially utilized in different environmental, biological or medical applications. Depending on the type of the discharge and the input energy these processes include electric field, ultraviolet radiation, overpressure shock waves and, of particular importance, formation of various reactive chemical species such as radicals (OH•, H•, O•) and molecular species (H2O2, H2, O3). These processes contribute to degradation of organic compounds and inactivation of microorganisms in water by electrical discharge plasma. The main mechanism of plasmachemical decomposition of organic compounds in water involves oxidation processes initiated by OH• radicals, ozone, and hydrogen peroxide (especially in the presence of suitable catalysts such as iron, platinum, tungsten). In the gas-liquid discharge environments, the nature of the gas phase (typically air, oxygen, or argon) affects the formation of chemical products (such as oxygen- and nitrogen-based reactive species), which, in turn, transfer from the gas phase into the liquid and contribute to the plasmachemical processes in water. Reductive pathways induced by H• and superoxide O2•- radicals and molecular hydrogen can take place as well. In the case of microbial inactivation the physical processes from plasma, such as UV photolysis, large electric fields and shock waves, may also contribute.

 

In recent years we have developed several types of electrical discharge reactors of different electrode geometries (point-plate, wire-cylinder, hole-plate) producing electrical discharge either directly in the liquid phase or in the gas phase in close proximity to the liquid surface or in both phases simultaneously (figure below shows some discharge reactors we have developed at IPS Dpt.). Special metallic electrodes covered by thin layer of porous ceramic were developed in order to generate multichannel discharge in water using a wide variety of geometrical configurations, including wire cylinder or planar systems. Porous ceramic coatings were deposited on the surface of metal electrode by thermal plasma spraying of powders of natural raw minerals such as aluminum oxide or iron aluminum silicate (almandine). We have published a number of papers on the plasmachemical processes induced by electrical discharges in water and at gas-liquid interfaces (emission spectroscopy and chemical analyses of reactive chemical species such as radicals H•, O•, OH• and molecular species H2O2, H2, O2, O3), physical processes induced by discharges in water in dependence on the solution conductivity (such as quantitative evaluation of emission intensity of ultraviolet radiation from the discharge and generation of shock waves in water), electron density measurements and electrical breakdown phenomena associated at surface ceramic/electrolyte interfaces. We cooperate in the frame of joint research projects with many research institutions working in plasma physics and chemistry field in the Czech Republic and abroad including cooperations within the International Bioelectrics Consortium. 

 

Streamerový výboj ve vodě
Streamer
discharges in water

Multistreamerový výboj ve vodě

Multichannel
discharges in water

Výboje v bublinách vodní páry ve vodě

Discharges in vapor
bubbles in water

Výboje v kontaktu s vodní hladinou

Discharges in contact
with water surface


Publications

  1. Doležalová E., Lukeš P. (2015) "Membrane Damage and Active But Nonculturable State in Liquid Cultures of Escherichia coli Treated with an Atmospheric Pressure Plasma Jet" Bioelectrochemistry 103: 7-14 [Abstract] [LINK]
  2. Ruma, Hosseini S.H.R., Yoshihara K., Akiyama M., Sakugawa T., Lukeš P., Akiyama H. (2014) "Properties of Water Surface Discharge at Different Pulse Repetition Rates" J. Appl. Phys. 116 (12): 123304 [Abstract] [LINK]
  3. Lukeš P., Doležalová E., Sisrová I., Člupek M. (2014) "Aqueous-Phase Chemistry and Bactericidal Effects from an Air Discharge Plasma in Contact with Water: Evidence for the Formation of Peroxynitrite through a Pseudo-Second-Order Post-Discharge Reaction of H2O2 and HNO2" Plasma Sources Sci. Technol. 23 (1): 015019 [Abstract] [LINK]
  4. Machala Z., Tarabová B., Hensel K., Špetlíková E., Šikurová L., Lukeš P. (2013) "Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects" Plasma Proc. Polym. 10 (7): 649-659 [Abstract] [LINK]
  5. Ruma, Lukeš P., Aoki N., Špetlíková E., Hosseini S.H.R., Sakugawa T., Akiyama H. (2013) "Effects of Pulse Frequency of Input Power on the Physical and Chemical Properties of Pulsed Streamer Discharge Plasmas in Water" J. Phys. D: Appl. Phys. 46 (12): 125202 [Abstract] [LINK]
  6. Lukeš P., Člupek M., Babický V., Špetlíková E., Sisrová I., Maršálková E., Maršálek B. (2013) "High Power DC Diaphragm Discharge Excited in a Vapor Bubble for the Treatment of Water" Plasma Chem. Plasma Proc. 33 (1): 83-95 [Abstract] [LINK]
  7. Lukeš P., Locke B.R., Brisset J.L. (2012) Aqueous-Phase Chemistry of Electrical Discharge Plasma in Water and in Gas-Liquid Environments, In: Plasma Chemistry and Catalysis in Gases and Liquids, Chapter 7, (Eds.: Parvulescu V. I., Magureanu M. and Lukes P.), Wiley-VCH, Weinheim, ISBN-13: 978-3-527-33006-5, p. 241-307
  8. Lukeš P., Brisset J.L., Locke B.R. (2012) Biological Effects of Electrical Discharge Plasma in Water and in Gas-Liquid Environments, In: Plasma Chemistry and Catalysis in Gases and Liquids, Chapter 8, (Eds.: Parvulescu V. I., Magureanu M. and Lukes P.), Wiley-VCH, Weinheim, ISBN-13: 978-3-527-33006-5, p. 309-352
  9. Locke B.R., Lukeš P., Brisset J.L. (2012) Elementary Chemical and Physical Phenomena in Electrical Discharge Plasma in Gas-Liquid Environments and in Liquids, In: Plasma Chemistry and Catalysis in Gases and Liquids, Chapter 6, (Eds.: Parvulescu V. I., Magureanu M. and Lukes P.), Wiley-VCH, Weinheim, ISBN-13: 978-3-527-33006-5, p. 183-239
  10. Šimek M., Člupek M., Babický V., Lukeš P., Šunka P. (2012) "Emission Spectra of a Pulse Needle-to-Plane Corona-like Discharge in Conductive Aqueous Solutions" Plasma Sources Sci. Technol. 21 (5): 055031 [Abstract] [LINK]
  11. Lukeš P., Člupek M., Babický V. (2011) "Discharge Filamentary Patterns Produced by Pulsed Corona Discharge at the Interface Between a Water Surface and Air" IEEE Trans. Plasma Sci. 39 (11): 2644-2645 [Abstract] [LINK]
  12. Lukeš P., Člupek M., Babický V., Sisrová I., Janda V. (2011) "The Catalytic Role of Tungsten Electrode Material in the Plasmachemical Activity of a Pulsed Corona Discharge in Water" Plasma Sources Sci. Technol. 20 (3): 034011 [Abstract] [LINK]
  13. Lukeš P., Člupek M., Babický V., Šunka P. (2009) "The Role of Surface Chemistry at Ceramic/Electrolyte Intefaces in the Generation of Pulsed Corona Discharges in Water Using Porous Ceramic-Coated Rod Electrodes" Plasma Proc. Polym. 6 (11): 719-728 [Abstract] [LINK]
  14. Lukeš P., Člupek M., Babický V., Šunka P. (2008) "Pulsed Electrical Discharge in Water Generated Using Porous Ceramic Coated Electrodes" IEEE Trans. Plasma Sci. 36 (4): 1146-1147 [Abstract] [LINK]
  15. Lukeš P., Člupek M., Babický V., Šunka P. (2008) "Ultraviolet Radiation from the Pulsed Corona Discharge in Water" Plasma Sources Sci. Technol. 17 (2): 024012 [Abstract] [LINK]
  16. De Baerdemaeker F., Šimek M., Člupek M., Lukeš P., Leys C. (2006) "Hydrogen Peroxide Production in Capillary Underwater Discharges" Czech. J. Phys. 56 (Suppl. B): B1132-B1139 [Abstract] [PDF]
  17. Lukeš P., Člupek M., Babický V., Šunka P., Skalný J.D., Štefečka M., Novák J., Málková Z. (2006) "Erosion of Needle Electrodes in Pulsed Corona Discharge in Water" Czech. J. Phys. 56 (Suppl. B): B916-B924 [Abstract] [PDF]
  18. Lukeš P., Locke B. R. (2005) "Plasmachemical Oxidation Processes in Hybrid Gas-Liquid Electrical Discharge Reactor" J. Phys. D: Apl. Phys. 38 (22): 4074-4081 [Abstract] [LINK]
  19. Lukeš P., Locke B. R. (2005) "Degradation of Substituted Phenols in a Hybrid Gas-Liquid Electrical Discharge Reactor" Ind. Eng. Chem. Res. 44 (9): 2921-2930 [Abstract] [LINK]
  20. Lukeš P., Člupek M., Šunka P., Peterka F., Sano T., Negishi N., Matsuzawa S., Takeuchi K. (2005) "Degradation of Phenol by Underwater Pulsed Corona Discharge in Combination with TiO2 Photocatalysis" Res. Chem. Intermediat. 31 (4-6): 285-294 [Abstract] [LINK]
  21. Lukeš P., Člupek M., Babický V., Janda V., Šunka P. (2005) "Generation of Ozone by Pulsed Corona Discharge over Water Surface in Hybrid Gas-Liquid Electrical Discharge Reactor" J. Phys. D: Appl. Phys. 38 (3): 409-416 [Abstract] [LINK]
  22. Lukeš P., Člupek M., Babický V., Šunka P. (2004) "Ozone Formation by Gaseous Corona Discharge Generated above Aqueous Solution" Czech. J. Phys. 54 (Suppl. C): C909-C913 [Abstract] [PDF]
  23. Lukeš P., Appleton A. T., Locke B. R. (2004) "Hydrogen Peroxide and Ozone Formation in Hybrid Gas-Liquid Electrical Discharge Reactors" IEEE Trans. Ind. Appl.40 (1): 60-67 [Abstract] [LINK]
  24. Šunka P., Babický V., Člupek M., Fuciman M., Lukeš P., Šimek M., Beneš J., Locke B. R., Majcherová Z. (2004) "Potential Applications of Pulse Electrical Discharges in Water" Acta Phys. Slovaca 54 (2): 135-145 [Abstract] [PDF]
  25. Lukeš P., Člupek M., Šunka P., Babický V., Winterová G., Janda V. (2003) "Non-Thermal Plasma Induced Decomposition of 2-Chlorophenol in Water" Acta Phys. Slovaca 53 (6): 423-430 [Abstract] [PDF]
  26. Lukeš P., Člupek M., Šunka P., Babický V., Janda V. (2002) "Effect of Ceramic Composition on Pulse Discharge Induced Processes in Water Using Ceramic-Coated Wire to Cylinder Electrode System" Czech. J. Phys. 52 (Suppl. D): D800-D806 [Abstract] [PDF]
  27. Šunka P., Babický V., Člupek, Lukeš P., Šimek M., Schmidt J., Černák M. (1999) "Generation of Chemically Active Species by Electrical Discharges in Water" Plasma Sources Sci. Technol. 8 (2): 258-265 [Abstract] [LINK]